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SINGULAR PERTURBATIONS

OF MEAN CURVATURE FLOW

Giovanni Bellettini, Carlo Mantegazza & Matteo Novaga

Abstract

We consider a regularization method for mean curvature flow
of a submanifold of arbitrary codimension in the Euclidean space,
through higher order equations.

We prove that the regularized problems converge to the mean
curvature flow for all times before the first singularity.

1. Introduction

It is well known that a smooth compact submanifold of the Euclidean
space, flowing by mean curvature, develops singularities in finite time.
This is a common aspect of geometric evolutions, and motivates the
study of the flow past singularities. Concerning the mean curvature
motion, several notions of weak solutions have been proposed, after the
pioneering work of Brakke [9], see for instance [1, 3, 4, 7, 8, 10, 11, 15,
20, 21, 22, 23, 27]. We recall that some of these solutions may differ,
in particular in presence of the so–called fattening phenomenon (see for
instance [6]).

Following a suggestion of Ennio De Giorgi in [12], we consider and
study a regularization of mean curvature flow with a singular perturba-
tion of higher order, which could lead to a new definition of generalized
solution in any dimension and codimension.

Let us state our main result.

Let ϕ : M → R
n+m be a smooth compact n–dimensional immersion

in R
n+m. For k > [n/2] + 2 (where [n/2] denotes the integer part of

n/2) and ε > 0 we consider the functional

Gε
k(ϕ) =

∫

M

(
1 + ε|Ak(ϕ(p))|2

)
dµ(p),

where µ is the canonical volume measure associated with the metric
g induced on M via the immersion ϕ. With Ak we denote the k–
differential in R

n+m of the function AM given by

AM (x) =
|x|2 − [dM (x)]2

2
,

Received 08/02/2004.

403



404 G. BELLETTINI, C. MANTEGAZZA & M. NOVAGA

where [dM ]2 is the square of the distance function from ϕ(M), which is
smooth in a neighborhood of a point of the submanifold without self–
intersections. Since locally on M every immersion is an embedding,
we can define Ak also at such points. More precisely, the tensor Ak is
defined as

Ak
i1...ik

=
∂kAM

∂xi1 . . . ∂xik

for every k–tuple of indexes i1, . . . , ik ∈ {1, . . . , n + m}.
For simplicity, in the following we always write Ak for Ak ◦ ϕ.

We remark (see [14, Prop. 2.2 and Cor. 2.4]) that the tensors Ak and
∇k−3B, where B is the second fundamental form of M and ∇ is the
covariant derivative associated with the induced metric g, are strictly
related; hence, in a way the functional Gε

k is a perturbation of the area
functional by a term containing the squares of the high order derivatives
of the curvatures of M .

By means of Theorem 4.5 and Theorem 5.9 in [2] and the results
of [14], the gradient flow associated with the functional Gε

k is given by
the PDE system

(1.1)
∂ϕε

∂t
= H + 2εk(−1)k

(
(k − 2)–times

︷ ︸︸ ︷
∆M ◦ ∆M ◦ . . . ◦ ∆M H

)⊥
+ ε LOT

where H is the mean curvature vector and LOT denotes terms of lower
order in the curvature and its derivatives.

We can see then that (1.1) is a singular perturbation of the mean
curvature flow, and coincides with it when ε = 0. In [14] (see also [13]
and [26]) it is proved that for every ε > 0 the system in (1.1) admits a
unique smooth solution defined for all times; we are then interested in
the convergence to the mean curvature flow when ε → 0.

Our main result is the following.

Theorem 1.1. Let ϕ0 : M → R
n+m be a smooth immersion of a

compact n–dimensional manifold without boundary. Let Tsing > 0 be the

first singularity time of the mean curvature flow ϕ : M × [0, Tsing) →
R

n+m of M . For any ε > 0 let ϕε : M × [0, +∞) → R
n+m be the flows

associated with the functionals Gε
k, with k > [n/2] + 2, all starting from

the same initial immersion ϕ0. Then the maps ϕε converge locally in

C∞(M × [0, Tsing)) to the map ϕ, as ε → 0.

Example 1.2. In case of immersed plane curves γ : S
1 → R

2 (n =
m = 1) the simplest choice is k = 3. Since it turns out that |A3|2 = 3κ2,
where κ is the curvature of γ, in this simple case the approximating
functionals read as ∫

γ

(
1 + εκ2

)
ds
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where s is the arclength parameter, and we have replaced 3ε with ε.
The regularized system which approximates the curve shortening flow
is then

(1.2)
∂γ

∂t
=

(
κ − 2ε∂2

sκ − εκ3
)
ν,

where ν is a suitable choice of the normal unit vector to the curve.

The crucial point in order to prove Theorem 1.1 is to obtain ε–
independent estimates of the curvature and its derivatives in order to
gain sufficient compactness properties. We get these by computing the
evolution equations satisfied by the L2 norms of the derivatives of the
second fundamental form of the flowing manifolds, and by estimating
via Gagliardo–Nirenberg interpolation inequalities.

At the present moment we are not able to characterize the limit of
the approximating flows after the first singularity, as the proof of The-
orem 1.1 relies heavily on the smoothness of the mean curvature flow
in the time interval of existence. Our goal would be to provide some
limit flow defined for all times, thus providing a new weak definition of
solution in any dimension and codimension.

We mention the simplest open problem in defining a limit flow after
the first singularity.

It is well known (Gage–Hamilton [16, 17] and Huisken [19]) that a
convex curve in the plane (or hypersurface in R

n+1) moving by mean
curvature shrinks to a point in finite time, becoming exponentially
round. In this case we expect that the approximating flows converge
(in a way to be made precise) to such point for every time after the
extinction one.

The plan of the paper is the following. In Section 2 we give some
notation and we recall the relations between the squared distance func-
tion and the second fundamental form and its covariant derivatives. In
Section 3, in order to make the line of proof clearer, we work out in de-
tail the ε–independent estimates in the simplest case of plane immersed
curves; also in this special case, the result appears to be nontrivial. In
Sections 4, 5 and 6 we consider the general case of a n–dimensional
submanifold of R

n+m. Section 7 is devoted to showing Theorem 1.1.
We remark here (but we will not discuss such an extension in this

paper) that our method works in general for any geometric evolution
of submanifolds in a Riemannian manifold till the first singularity time,
even when the equations are of high order (like, for instance, in the
Willmore flow, see [24, 25, 28]), choosing a regularizing term of appro-
priately high order.

Finally, it should be noted that, looking at the evolution equation
(1.1), these perturbations of the mean curvature flow could be consid-
ered, in the framework of geometric evolution problems, as an analogue
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of the so–called vanishing viscosity method. Indeed, we perturb the
mean curvature flow equation with a regularizing higher order term mul-
tiplied by a small parameter ε > 0. The lower order terms, denoted by
LOT, which appear in (1.1) are due to the fact that we actually perturb
the area functional and not directly the evolution equation. However,
the analogy with the classical viscosity method cannot be pushed too
far. For instance, because of the condition k > [n/2] + 2, our regular-
ized equations are of order not less than four (precisely at least four
for evolving curves, at least six for evolving surfaces). Moreover, as the
Laplacians appearing in equation (1.1) are relative to the induced met-
ric, the system is quasilinear and the lower order terms are nonlinear
(polynomial).

2. Notation and Preliminaries

We denote with e1, . . . , en+m the canonical basis of R
n+m and with

〈 , 〉 its standard scalar product.

We let ϕ : M → R
n+m be a smooth, compact, n–dimensional, reg-

ularly immersed submanifold without boundary. Identifying (at least
locally) M with its image ϕ(M), we denote by TxM , NxM ⊂ R

n+m

respectively, the tangent space and the normal space at x ∈ M .
The distance function dM and the squared distance function ηM from

M are given by

dM (x) = inf
y∈M

|x − y| and ηM (x) = [dM (x)]2

for any x ∈ R
n+m (we will drop the superscript M when no ambiguity

is possible). In this section we recall some facts from [2] and [14] about
the distance function and the relations between the high derivatives of
ηM and the second fundamental form of M .

When M is embedded, there exists an open neighborhood Ω ⊂ R
n+m

of M such that dM is smooth in Ω\M and ηM is smooth in the whole of
Ω. If M is only immersed, at any point of M we consider the distance
(we still use the symbols dM and ηM for simplicity) from an embedded
image of a suitable neighborhood of the point; in this case the regularity
properties of dM and ηM hold in a neighborhood (still denoted by Ω)
of such an embedded image.

Clearly, ηM (x) = 0 and ∇ηM (x) = 0 at every x ∈ M ; moreover, for
every x ∈ Ω we have that x − ∇ηM (x)/2 is the unique point in M of
minimum distance from x (the projection of x on M), that we denote
with πM (x).

Another nice property of the squared distance is that, for every x ∈ M
the Hessian matrix ∇2ηM (x) is twice the matrix of orthogonal projection
onto the normal space NxM . We will denote respectively with XM and
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X⊥ the orthogonal projections of a vector X on the tangent and normal
space of M .

Let x ∈ M and X, Y ∈ TxM ; the vector valued second fundamental
form of M at the point x is given by

B(X, Y ) =
( ∂Y

∂X

)⊥
,

where we extended locally the two vectors X, Y to tangent vector fields
on M (the derivative is well defined since X is a tangent vector at x).

If {να}α=1,...,m is a local basis of the normal bundle we have

B(X, Y ) = −
〈∂να(x)

∂X
, Y

〉
να(x),

where here and throughout all the paper we use the convention of sum-
ming on repeated indexes.

We will see B as a bilinear map from TxM × TxM to R
n+m; hence,

as a family of n + m bilinear forms Bk = 〈B, ek〉 : TxM × TxM → R.
Moreover, we consider B acting also on vectors of R

n+m, not necessarily
tangent, by setting B(V, W ) = B(V M , WM ) ∈ NxM ⊂ R

n+m for every
pair V, W ∈ R

n+m. With such a definition, Bk
ij = 〈B(ei, ej), ek〉.

It is well known that B is a symmetric bilinear form and its trace is
the mean curvature of components Hk = Bk

jj .
We now introduce the function

AM (x) =
|x|2 − [dM (x)]2

2
,

smooth as ηM in the neighborhood Ω of M , and we set

AM
i1...ik

(x) =
∂kAM (x)

∂xi1 . . . ∂xik

for the derivatives of AM at every point x ∈ Ω.

The following proposition (see [2] for the proof) shows the first con-
nection between the second fundamental form and the function AM (or
equivalently, the squared distance function).

Proposition 2.1. The following relations hold.

• For any x ∈ Ω, the point ∇AM (x) is the projection point πM (x).
• If x ∈ M , then ∇2AM (x) is the matrix of orthogonal projection

on TxM .

• For every x ∈ M ,

Bk
ij = AM

ijs(δks − AM
ks),

AM
ijk = Bk

ij + Bi
jk + Bj

ki,

Hk = AM
iik.
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We define now the k–derivative tensor Ak(x) acting on k–tuples of

vectors Xi ∈ R
n+m, where Xi = Xj

i ej , as follows:

Ak(x)(X1, . . . , Xk) = AM
i1...ik

(x)Xi1
1 . . . Xik

k ;

notice that the tensors Ak are symmetric.

For notational simplicity, we drop the superscript M on Ak; for the
same reason, we also avoid to indicate the point x ∈ M in the sequel.

The tensors Ak and ∇k−3B are strictly related by a recurrence formula
proved in [14, Prop. 2.2 and Cor. 2.4].

Remark 2.2. We underline here an important convention used in the
paper. Due to the high codimension, we will work with several tensors
(like normal vector fields or the second fundamental form B) taking
values in R

n+m; these tensors will be considered as families of n + m
tensors with values in R. With this convention, for instance, ∇B means
that we are considering the family of covariant derivatives of the tensors
B1, . . . ,Bn+m, one component at time. Unless otherwise specified, this
convention will be used even also for tangent vector fields, that is, when
X is a tangent vector field, ∇X is not the covariant derivative of X but
the derivative of its components in the basis of R

n+m.

Throughout the paper we write T ∗ S, following Hamilton [18], to
denote a tensor formed by contraction on some indexes of the tensors
T and S using the coefficients gij .

If T1, . . . , Tl are tensors (here l is not an index of the tensor T ), with
the symbol

l

⊛
i=1

Ti

we mean T1 ∗ T2 ∗ · · · ∗ Tl.

Definition 2.3. We use the symbol ps(∇lB) for a polynomial (with
the ∗–product) tensor with constant coefficients in the coordinate basis
∂ϕ/∂xi, the second fundamental form B and its derivatives up to the
order l, such that each of its monomials is of the form

N

⊛
k=1

∇jkB with 0 ≤ jk ≤ l and N ≥ 1

or
N

⊛
k=1

∇jkB
∂ϕ

∂xi
with 0 ≤ jk ≤ l and N ≥ 1

where, in both cases, the rescaling order s equals

s =
N∑

k=1

(jk + 1).
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We use instead the symbol qs(∇lB) for a polynomial of the kind ps(∇lB)
such that the contraction with the metric is total, both in the covariant
and in the R

n+m–indexes.

As the contraction in the ambient space R
n+m “cancels” all the ba-

sis elements ∂ϕ/∂xi appearing in the formulas, it follows that every
monomial of qs(∇lB) has the form

N

⊛
k=1

∇jkB with 0 ≤ jk ≤ l and
N∑

k=1

(jk + 1) = s,

where the covariant indexes are all completely contracted with gij .

Remark 2.4. See the paper [26, Sect. 2] for more details on these
polynomials and the geometric interpretation of the rescaling order.
Notice that, differently from [26], here we need to consider in ps(∇lB)
monomials of two types, because of the codimension higher than one.

We advise the reader that the polynomials ps and qs may vary from
line to line, and similarly the constants (usually indicated by C).

3. Evolving Plane Curves

Let γ ∈ C∞(S1; R2) be a regular immersed closed curve in the plane
R

2. Let τ = γx/|γx| = γs and ν = Rτ be respectively the tangent and
the normal to the curve γ, where R is the counterclockwise rotation of
π/2 in the plane, and γx = ∂xγ.

We recall that ∂s = ∂x/|γx| and

(3.1) ∂sτ = κν, ∂sν = −κτ

where κ is the curvature of γ. In the sequel we let L = L(γ) =
∫
γ 1 ds

be the length of the curve γ.
Let us consider the functional

Gε(γ) =

∫

γ

(
1 + εκ2

)
ds,

which is obtained from Gε
3 (with n = m = 1) by replacing 3ε with ε. Set

Eε = −κ + 2ε∂2
sκ + εκ3.

Then the gradient flow by Gε is given by a smooth map γ : S
1 ×

[0, +∞) → R
2 which is an immersion for any t ∈ [0, +∞), equals a

given immersion γ0 at time t = 0, and satisfies

(3.2) ∂tγ = −Eε ν ,

where ∂t = ∂
∂t . For notational simplicity, we omit the dependence of γ

on ε.
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Lemma 3.1. We have

∂s∂tγ = −(∂sE
ε)ν + κEετ,

in particular

(3.3) 〈∂s∂tγ, τ〉 = κEε.

Proof. It follows from equations (3.1) and the evolution equation
(3.2). q.e.d.

Lemma 3.2. Let γ be a smooth closed curve; then

(3.4)
1

L
≤ 1

4π2

∫

γ
κ2 ds.

Proof. By Borsuk and Schwartz–Hölder inequalities we have

2π ≤
∫

γ
|κ| ds ≤

(∫

γ
κ2 ds

)1/2

L1/2.

q.e.d.

Lemma 3.3. The following commutation rule holds:

(3.5) ∂t∂s = ∂s∂t − κEε∂s.

Proof. Observing that ∂t∂x

|γx| = ∂x

|γx|∂t = ∂s∂t, we have

∂t∂s = ∂t

(
∂x

|γx|

)
=

∂t∂x

|γx|
− 〈γx, ∂tγx〉∂x

|γx|3

=
∂x

|γx|
∂t −

〈
γx

|γx|
,
∂tγx

|γx|

〉
∂x

|γx|
= ∂s∂t − 〈τ, ∂s∂tγ〉∂s.

Then the commutation rule (3.5) follows from equation (3.3). q.e.d.

Lemma 3.4. We have

(3.6)
∂tκ = −∂2

sEε − κ2Eε = ∂2
sκ + κ3 − 2ε∂4

sκ − 6εκ(∂sκ)2 − 5εκ2∂2
sκ − εκ5.

Proof. We have

∂tκ = ∂t〈∂sτ, ν〉 = 〈∂t∂sτ, ν〉.
Therefore, using formula (3.5) we have

∂tκ = 〈∂s∂t∂sγ, ν〉 − κEε〈∂sτ, ν〉
= 〈∂2

s∂tγ, ν〉 − 〈∂s[κEε∂sγ], ν〉 − κ2Eε.

Using the evolution law (3.2) we get

〈∂2
s∂tγ, ν〉 = −〈∂2

s (Eεν), ν〉 = −∂2
sEε + Eε〈∂s(κτ), ν〉

= −∂2
sEε + κ2Eε.
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In addition,
〈∂s[κEε∂sγ], ν〉 = κEε〈∂sτ, ν〉 = κ2Eε.

Hence ∂tκ = −∂2
sEε − κ2Eε and the last equality in (3.6) follows by

expanding Eε. q.e.d.

Remark 3.5. For ε = 0, formula (3.6) gives the well known evolution
equation κt = ∂2

sκ + κ3, valid for motion by curvature, see [17, Lemma
3.1.6].

We recall now the following interpolation inequalities for closed
curves, see [5, p. 93].

Proposition 3.6. Let γ be a regular closed curve in R
2 with finite

length L. Let u be a smooth function defined on γ, m ≥ 1 and p ∈
[2, +∞]. If n ∈ {0, . . . , m − 1} we have the estimates

(3.7) ‖∂n
s u‖Lp ≤ Cn,m,p‖∂m

s u‖σ
L2‖u‖1−σ

L2 +
Bn,m,p

Lmσ
‖u‖L2 ,

where

σ =
n + 1/2 − 1/p

m
∈ [0, 1)

and the constants Cn,m,p and Bn,m,p are independent of γ.

Clearly inequalities (3.7) hold with uniform constants if applied to
a family of curves having lengths uniformly bounded below by some
positive value.

Remark 3.7. In the special case p = +∞, we have σ = n+1/2
m , and

‖∂n
s u‖L∞ ≤ Cn,m‖∂m

s u‖σ
L2‖u‖1−σ

L2 +
Bn,m

Lmσ
‖u‖L2 .

Remark 3.8. In the particular case n = 0, m = 2, p = 6 we get
σ = 1/6 and

‖u‖L6 ≤ C‖∂2
su‖

1

6

L2‖u‖
5

6

L2 +
C

L
1

3

‖u‖L2

for some C > 0; hence, by means of the Young inequality |xy| ≤ 1
a |x|a +

1
b |y|b, 1/a + 1/b = 1, choosing a = b = 2, x =

√
2‖∂2

su‖L2 and y =
C6√

2
‖u‖5

L2 , we obtain

(3.8)

∫

γ
u6 ds ≤

∫

γ
(∂2

su)2 ds + C

(∫

γ
u2 ds

)5

+
C

L2

(∫

γ
u2 ds

)3

.

In the particular case n = 0, m = 1, p = 4 we get σ = 1/4 and

‖u‖L4 ≤ C‖∂su‖
1

4

L2‖u‖
3

4

L2 +
C

L
1

4

‖u‖L2 ;

hence, reasoning as before,

(3.9)

∫

γ
u4 ds ≤

∫

γ
(∂su)2 ds + C

(∫

γ
u2 ds

)3

+
C

L

(∫

γ
u2 ds

)2

.
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We are now ready for the estimates. We recall that

(3.10) ∂t ds = κEε ds = (−κ2 + 2εκ∂2
sκ + εκ4) ds.

Lemma 3.9. We have

(3.11) ∂t

∫

γ
κ2 ds =

∫

γ

(
−2(∂sκ)2 +κ4−4ε(∂2

sκ)2−εκ6−4εκ3∂2
sκ

)
ds.

Proof. From (3.10) and Lemma 3.4 we get

∂t

∫

γ
κ2 ds

= 2

∫

γ
κ∂tκ ds +

∫

γ
(−κ4 + 2εκ3∂2

sκ + εκ6) ds

= 2

∫

γ
κ
(
∂2

sκ + κ3 − 2ε∂4
sκ − 6εκ(∂sκ)2 − 5εκ2∂2

sκ − εκ5
)
ds

+

∫

γ
(−κ4 + 2εκ3∂2

sκ + εκ6) ds

=

∫

γ

(
2κ∂2

sκ + κ4 − 4εκ∂4
sκ − 12εκ2(∂sκ)2 − 8εκ3∂2

sκ − εκ6
)
ds.

Therefore, integrating by parts, we obtain

∂t

∫

γ
κ2 ds

=

∫

γ

(
− 2(∂sκ)2 + κ4 − 4ε(∂2

sκ)2 − εκ6 − 12εκ2(∂sκ)2 − 8εκ3∂2
sκ

)
ds

=

∫

γ

(
− 2(∂sκ)2 + κ4 − 4ε(∂2

sκ)2 − εκ6 − 4εκ3∂2
sκ

)
ds,

where in the last equality we used the fact that −3
∫
γ κ2(∂sκ)2 ds =∫

γ κ3∂2
sκ ds. q.e.d.

Proposition 3.10. The following estimate holds:

(3.12) ∂t

∫

γ
κ2 ds ≤ C

(∫

γ
κ2 ds

)3

+ C

(∫

γ
κ2 ds

)5

,

where C is a constant independent of ε.

Proof. Adding to the right hand side of equation (3.11) the positive
quantity 2ε(∂2

sκ + κ3)2 we get

∂t

∫

γ
κ2 ds ≤

∫

γ

(
− 2(∂sκ)2 + κ4 − 2ε(∂2

sκ)2 + εκ6
)
ds.
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Now using inequalities (3.8) and (3.9) we obtain

∂t

∫

γ
κ2 ≤

∫

γ

(
− (∂sκ)2 − ε(∂2

sκ)2
)
ds + Cε

(∫

γ
κ2 ds

)5

+
Cε

L2

(∫

γ
κ2 ds

)3

+ C

(∫

γ
κ2 ds

)3

+
C

L

(∫

γ
κ2 ds

)2

≤ C

(∫

γ
κ2 ds

)5

+ C

(∫

γ
κ2 ds

)3

+
C

L

(∫

γ
κ2 ds

)2

+
C

L2

(∫

γ
κ2 ds

)3

≤ C

(∫

γ
κ2 ds

)5

+ C

(∫

γ
κ2 ds

)3

,

where we supposed ε < 1 and in the last inequality we used the geomet-
ric estimate (3.4). q.e.d.

We deal now with the higher derivatives of the curvature.

Since here we are working in dimension and codimension one, for the
rest of this section all polynomials in the curvature κ and its derivatives
are completely contracted, that is they belong to the “family” qr(∂l

sκ)
(see Definition 2.3); moreover, each of their monomials is of the form

N∏

i=1

∂ji
s κ with 0 ≤ ji ≤ l and N ≥ 1

with

r =
N∑

i=1

(ji + 1),

as the ∗–product in this case is simply the usual product.

Lemma 3.11. For any j ∈ N the following formula holds:

(3.13)
∂t∂

j
sκ = ∂j+2

s κ + qj+3(∂j
sκ) − 2ε∂j+4

s κ − 5εκ2∂j+2
s κ + εqj+5(∂j+1

s κ).

Proof. We argue by induction on j.

The case j = 0 in (3.13) is equation (3.6), where q5(∂sκ) = −6κ(∂sκ)2

−κ5.

Suppose that (3.13) holds for (j−1); using the commutation rule (3.5),
we get

∂t∂
j
sκ = ∂s∂t∂

j−1
s κ + κ(κ − 2ε∂2

sκ − εκ3)∂j
sκ

= ∂s

[
∂j+1

s κ + qj+2(∂j−1
s κ) − 2ε∂j+3

s κ − 5εκ2∂j+1
s κ + εqj+4(∂j

sκ)
]

+ qj+3(∂j
sκ) + εqj+5(∂j+1

s κ),
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where we expressed qj+3(∂j
sκ) = κ2∂j

sκ and qj+5(∂j+1
s κ) = −(2κ∂2

sκ +

κ4)∂j
sκ. Hence, we deduce

∂t∂
j
sκ = ∂j+2

s κ + qj+3(∂j
sκ) − 2ε∂j+4

s κ − 5εκ2∂j+2
s κ + εqj+5(∂j+1

s κ),

which gives the inductive step. q.e.d.

Lemma 3.12. For any j ∈ N we have

∂t

∫

γ
|∂j

sκ|2 ds = −2

∫

γ
|∂j+1

s κ|2 ds − 4ε

∫

γ
|∂j+2

s κ|2 ds

+

∫

γ
q2j+4(∂j

sκ) ds + ε

∫

γ
q2j+6(∂j+1

s κ) ds.

Proof. Using (3.10), (3.13) and integrating by parts we deduce

∂t

∫

γ
|∂j

sκ|2 ds = 2

∫

γ
∂j

sκ ∂t∂
j
sκ ds +

∫

γ
|∂j

sκ|2κEε ds

(3.14)

= 2

∫

γ
∂j

sκ
(
∂j+2

s κ + qj+3(∂j
sκ)

)
ds

+ ε

∫

γ
2∂j

sκ
(
− 2∂j+4

s κ − 5κ2∂j+2
s κ + qj+5(∂j+1

s κ)
)
ds

−
∫

γ
|∂j

sκ|2κ(κ − 2ε∂2
sκ − εκ3) ds

= − 2

∫

γ

(
|∂j+1

s κ|2 + q2j+4(∂j
sκ)

)
ds

− 4ε

∫

γ

(
|∂j+2

s κ|2 + q2j+6(∂j+1
s κ)

)
ds .

q.e.d.

Proposition 3.13. For any j ∈ N we have the ε–independent esti-

mate, for ε < 1,

(3.15) ∂t

∫

γ
|∂j

sκ|2 ds ≤ C

(∫

γ
κ2 ds

)2j+3

+ C

(∫

γ
κ2 ds

)2j+5

+ C

where the constant C depends only on 1/L.

Proof. We estimate the term
∫
γ q2j+4(∂j

sκ) ds as in [26, Sect. 7]. By

definition, we have

q2j+4(∂j
sκ) =

∑

m

Nm∏

l=1

∂cml
s κ

with all the cml less than or equal to j and

Nm∑

l=1

(cml + 1) = 2j + 4
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for every m. Hence,

|q2j+4(∂j
sκ)| ≤

∑

m

Nm∏

l=1

|∂cml
s κ|

and setting

Qm =

Nm∏

l=1

|∂cml
s κ|,

we clearly obtain
∫

γ
|q2j+4(∂j

sκ)| ds ≤
∑

m

∫

γ
Qm ds.

We now estimate any term Qm via interpolation inequalities. After
collecting derivatives of the same order in Qm we can write

(3.16) Qm =

j∏

i=0

|∂i
sκ|αmi with

j∑

i=0

αmi(i + 1) = 2j + 4.

Then
∫

γ
Qm ds =

∫

γ

j∏

i=0

|∂i
sκ|αmi ds

≤
j∏

i=0

(∫

γ
|∂i

sκ|αmiλi ds

) 1

λi

=

j∏

i=0

‖∂i
sκ‖αmi

Lαmiλi

where the values λi are chosen as follows: λi = 0 if αmi = 0 (in this case

the corresponding term is not present in the product) and λi = 2j+4
αmi(i+1)

if αmi 6= 0. Clearly, αmiλi = 2j+4
i+1 ≥ 2j+4

j+1 > 2 and by the condition

in (3.16),
∑j

i=0

λi 6=0

1
λi

=
∑j

i=0

λi 6=0

αmi(i+1)
2j+4 = 1.

As αmiλi > 2 these values are allowed as exponents p in inequal-
ity (3.7) and taking m = j + 1, n = i, u = κ, we get

‖∂i
sκ‖Lαmiλi ≤ C‖∂j+1

s κ‖σmi

L2 ‖κ‖1−σmi

L2 +
C

L(j+1)σmi
‖κ‖L2

≤ C
(
‖∂j+1

s κ‖L2 + ‖κ‖L2

)σmi‖κ‖1−σmi

L2

with

σmi =
i + 1/2 − 1/(αmiλi)

j + 1
,

and the constant C depends only on 1/L.
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Multiplying together all the estimates,

∫

γ
Qm ds ≤ C

j∏

i=0

(
‖∂j+1

s κ‖L2 + ‖κ‖L2

)αmiσmi ‖κ‖αmi(1−σmi)
L2

(3.17)

≤ C
(
‖∂j+1

s κ‖L2 + ‖κ‖L2

)Pj
i=0

αmiσmi ‖κ‖
Pj

i=0
αmi(1−σmi)

L2 .

Then we compute

j∑

i=0

αmiσmi =

j∑

i=0

αmi(i + 1/2) − 1/λi

j + 1

=

∑j
i=0 αmi(i + 1/2) − 1

j + 1

and using again the rescaling condition in (3.16),

j∑

i=0

αmiσmi =
4j + 6 − ∑j

i=0 αmi

2(j + 1)
.

Since

j∑

i=0

αmi ≥
j∑

i=0

αmi
i + 1

j + 1

=
2j + 4

j + 1

we get

j∑

i=0

αmiσmi ≤
2j2 + 4j + 1

(j + 1)2

= 2 − 1

(j + 1)2
< 2.

Hence, we can apply the Young inequality to the product in the last
term of inequality (3.17), in order to get the exponent 2 on the first
quantity, that is,

∫

γ
Qm ds ≤ δm

2

(
‖∂j+1

s κ‖L2 + ‖κ‖L2

)2
+ Cm‖κ‖β

L2

≤ δm

∫

γ
|∂j+1

s κ|2 ds + δm

∫

γ
κ2 ds + Cm‖κ‖β

L2 ,
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for arbitrarily small δm > 0 and some constant Cm > 0. The exponent
β is given by

β =

j∑

i=0

αmi(1 − σmi)
1

1 −
Pj

i=0
αmiσmi

2

=
2

∑j
i=0 αmi(1 − σmi)

2 −
∑j

i=0 αmiσmi

=
2

∑j
i=0 αmi − 4j+6−Pj

i=0
αmi

j+1

2 − 4j+6−Pj
i=0

αmi

2(j+1)

= 2
2(j + 1)

∑j
i=0 αmi − 4j − 6 +

∑j
i=0 αmi

4j + 4 − 4j − 6 +
∑j

i=0 αmi

= 2
(2j + 3)

∑j
i=0 αmi − 2(2j + 3)

∑j
i=0 αmi − 2

= 2(2j + 3).

Therefore, we conclude

∫

γ
Qm ds ≤ δm

∫

γ
|∂j+1

s κ|2 ds + δm

∫

γ
κ2 ds + Cm

(∫

γ
κ2 ds

)2j+3

.

Repeating this argument for all the Qm and choosing suitable δm whose
sum over m is less than one, we conclude that there exists a constant C
depending only on 1/L and j ∈ N such that

∫

γ
q2j+4(∂j

sκ) ds ≤
∫

γ
|∂j+1

s κ|2 ds + C

(∫

γ
κ2

)2j+3

+ C.

Reasoning similarly for the term q2j+6(∂j+1
s κ), we obtain

∫

γ
q2j+6(∂j

sκ) ds ≤
∫

γ
|∂j+2

s κ|2 ds + C

(∫

γ
κ2 ds

)2j+5

+ C.

Hence, from (3.14) we get

∂t

∫

γ
|∂j

sκ|2 ds ≤ −
∫

γ
|∂j+1

s κ|2 ds − ε

∫

γ
|∂j+2

s κ|2 ds

+ C

(∫

γ
κ2 ds

)2j+3

+ Cε

(∫

γ
κ2 ds

)2j+5

+ C

≤ C

(∫

γ
κ2 ds

)2j+3

+ C

(∫

γ
κ2 ds

)2j+5

+ C

when ε < 1 and the constant C depends only on 1/L. q.e.d.
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By means of Propositions 3.10 and 3.13 we have then the following
result.

Theorem 3.14. For any j ∈ N there exists a smooth function Zj :
R → (0, +∞) such that

∂t

∫

γ
|∂j

sκ|2 ds ≤ Zj

(∫

γ
κ2 ds

)

for every ε < 1 and curve γ evolving by the gradient of the functional

Gε.

Proof. The statement clearly follows by Propositions 3.10 and 3.13,
since by Lemma 3.2 the quantity 1/L is controlled by

∫
γ κ2 ds.

The smoothness of the functions Zj is obtained choosing possibly
slightly larger constants in inequalities (3.15) and (3.12). q.e.d.

This proposition, like its analogue for the general case (Theorem 6.2),
is the key tool in order to get ε–independent compactness estimates.
Indeed, for example, one can see that, by an ODE’s argument, since all
the flows (letting 0 < ε < 1 vary) start from a common initial smooth
curve, fixing any j ∈ N, there exists a common positive interval of time
such that all the quantities ‖∂i

sκ‖L2 , for i ∈ {0, . . . , j} are equibounded.
This will allow us to get compactness and C∞ convergence to the mean
curvature flow as ε → 0.

4. The General Case

If k > [n/2] + 2 it is shown in [14] that for every ε > 0 all the flows
ϕε, associated with the functionals

Gε
k(ϕ) =

∫

M

(
1 + ε|Ak|2

)
dµ,

and starting from a common initial n–dimensional smooth compact im-
mersed submanifold of R

n+m, are smooth for every positive time.
By means of Theorem 4.5 and Theorem 5.9 in [2] and the results

of [14], the first variation of the functional Gε
k is given by

Eε = −H+2εk(−1)k−1
(

(k − 2)–times
︷ ︸︸ ︷
∆M ◦ ∆M ◦ . . . ◦ ∆M H

)⊥
+εq2k−3(∇2k−5B)⊥

where q2k−3(∇2k−5B) takes values in R
n+m.

Here we denote with ∆M the Laplacian of the smooth compact Rie-
mannian manifold without boundary M = (M, g), where g is the metric
induced on M by the immersion.

Then we have a solution of the geometric evolution problem for any
initial smooth immersion ϕ0 : M → R

n+m, that is, a smooth function
ϕε : M × [0, +∞) → R

n+m such that
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1) the map ϕε(·, t) : M → R
n+m is an immersion for every t ∈

[0, +∞);
2) ϕε(p, 0) = ϕ0(p) for every p ∈ M ;
3) the following parabolic system is satisfied:

∂ϕε

∂t
= −Eε

= H + 2εk(−1)k
(

(k − 2)–times
︷ ︸︸ ︷
∆M ◦ ∆M ◦ . . . ◦ ∆M H

)⊥
+ εq2k−3(∇2k−5B)⊥.

5. Evolution of Geometric Quantities

We work out some evolution equations for the geometric quantities
under the flow by the gradient of Gε

k.
In general, if a family of immersed manifolds ϕ(·, t) : M → R

n+m

moves by ∂tϕ = −E, with the field E normal, we have

∂gij

∂t
= 2 〈Bij , E〉 ,

∂gij

∂t
= −2gis 〈Bsl, E〉 glj .

Now for the Christoffel symbols Γs
ij =

〈
∂2ϕ

∂xi∂xj
, ∂ϕ

∂xl

〉
gls we have

∂Γs
ij

∂t
= −

〈
∂2E

∂xi∂xj
,
∂ϕ

∂xl

〉
gls −

〈
∂2ϕ

∂xi∂xj
,
∂E

∂xl

〉
gls

+

〈
∂2ϕ

∂xi∂xj
,
∂ϕ

∂xl

〉
∂gls

∂t
.

Then, supposing to work in normal coordinates, ∂2ϕ
∂xi∂xj

= Bij is a normal

vector; hence

∂Γs
ij

∂t
= −

〈
∂2E

∂xi∂xj
,
∂ϕ

∂xl

〉
gls −

〈
Bij ,

∂E

∂xl

〉
gls

= − ∂2

∂xi∂xj

〈
E,

∂ϕ

∂xl

〉
gls +

〈
∂E

∂xi
,

∂2ϕ

∂xj∂xl

〉
gls

+

〈
∂E

∂xj
,

∂2ϕ

∂xi∂xl

〉
gls +

〈
E,

∂3ϕ

∂xi∂xj∂xl

〉
gls −

〈
Bij ,

∂E

∂xl

〉
gls

= 〈Bjl,∇iE〉 gls + 〈Bil,∇jE〉 gls + 〈E,∇iBjl〉 gls − 〈Bij ,∇lE〉 gls.

Remark 5.1. By this computation, since the Christoffel symbols are
symmetric in the ij–indexes, the covariant 3–tensor (∇B)⊥ is symmetric
(as in the codimension one case).
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Then, we compute the evolution of B,

∂Bij

∂t
=

∂

∂t

(
∂2ϕ

∂xi∂xj
− Γs

ij

∂ϕ

∂xs

)
(5.1)

= − ∂2E

∂xi∂xj
−

∂Γs
ij

∂t

∂ϕ

∂xs
+ Γs

ij

∂E

∂xs

= −∇2
ijE −

∂Γs
ij

∂t

∂ϕ

∂xs

= −∇2
ijE + fsij(∇B,∇E)

∂ϕ

∂xs
,

where fsij(∇B,∇E) is the polynomial expression above in B, E and their
derivatives.

Before proceeding we need the following technical lemma.

Lemma 5.2. If X is a vector field on M with values in R
n+m, we

have

(∇iX)⊥ = ∇iX
⊥ + Bijg

js 〈X, ∂ϕ/∂xs〉 + 〈X, Bij〉 gjs ∂ϕ

∂xs
,

(∇iX)M = ∇iX
M − Bijg

js 〈X, ∂ϕ/∂xs〉 − 〈X, Bij〉 gjs ∂ϕ

∂xs
.

More generally,

(∇i1...ikX)⊥ = ∇i1...ikX⊥ +
k−1∑

j=0

pk−j
s (∇k−j−1B)

〈
∇jX, ∂ϕ/∂xs

〉

+
k−1∑

j=0

〈
∇jX, pk−j

s (∇k−j−1B)
〉 ∂ϕ

∂xs
.

Proof. We compute

(∇iX)⊥ = ∇iX
⊥ + (∇iX

M )⊥ − (∇iX
⊥)M

= ∇iX
⊥ + Bijg

js 〈X, ∂ϕ/∂xs〉 −
〈

∂X⊥

∂xi
,

∂ϕ

∂xj

〉
gjs ∂ϕ

∂xs

= ∇iX
⊥ + Bijg

js 〈X, ∂ϕ/∂xs〉 +

〈
X⊥,

∂2ϕ

∂xi∂xj

〉
gjs ∂ϕ

∂xs

= ∇iX
⊥ + Bijg

js 〈X, ∂ϕ/∂xs〉 + 〈X, Bij〉 gjs ∂ϕ

∂xs
.

The second formula is similar.

The third formula follows by induction, once one works in normal

coordinates where ∂2ϕ
∂xi∂xj

= Bij , which is a normal vector. q.e.d.

Remark 5.3. Roughly, this lemma says that the interchange of dif-
ferentiation and projection operators introduces some extra terms in B,
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X and their derivatives, and the order of differentiation of X is lower
than the initial one.

This is useful when X is a function of B; in particular, if X is the
mean curvature vector H we have

(∇i1...ikH)⊥ = ∇i1...ikH⊥ +
k−1∑

j=0

pk−j
s (∇k−j−1B)

〈
∇jH, ∂ϕ/∂xs

〉
(5.2)

+
k−1∑

j=0

〈
∇jH, pk−j

s (∇k−j−1B)
〉 ∂ϕ

∂xs

= ∇i1...ikH + pk(∇k−1B) + pk
s(∇k−1B)

∂ϕ

∂xs
,

as H is a normal vector.

Lemma 5.4. Flowing by the gradient of the functional Gε
k, for any

s ∈ N we have

∂

∂t

∫

M
|∇sB|2 dµ(5.3)

= −2

∫

M
|∇s+1B|2 dµ +

∫

M
q2s+4(∇s+1B) dµ

− 4εk

∫

M
|∇s+k−1B|2 dµ + ε

∫

M
q2k+2s(∇2k+s−3B) dµ

and

∂

∂t

∫

M
|B|2s+2 dµ(5.4)

=

∫

M
q2s+4(∇2B) dµ + ε

∫

M
q2k+2s(∇2k−3B) dµ.

Moreover, every monomial of the terms q in the two formulas contains

at least three factors, for the ∗–product.

Proof. Substituting Eε in place of E in (5.1) and expanding, after
some computation using Lemma 5.2, we get

∂B

∂t
= 2εk(−1)k∇2

(
(k − 2)–times

︷ ︸︸ ︷
∆M ◦ ∆M ◦ . . . ◦ ∆M H

)⊥
+ ∇2H(5.5)

+ εp2k−1(∇2k−3B) + εp2k−1
j (∇2k−3B)

∂ϕ

∂xj
+ p3

j (∇2B)
∂ϕ

∂xj
.



422 G. BELLETTINI, C. MANTEGAZZA & M. NOVAGA

Applying now formula (5.2) to the first term on the right hand side
of (5.5), we obtain

∂B

∂t
= 2εk(−1)k∇2

(k − 2)–times
︷ ︸︸ ︷
∆M ◦ ∆M ◦ . . . ◦ ∆M H + ∇2H

+ εp2k−1(∇2k−3B) + εp2k−1
j (∇2k−3B)

∂ϕ

∂xj
+ p3

j (∇2B)
∂ϕ

∂xj
.

We now observe that for any tensor T , we have

∂

∂t
∇T = ∇ ∂

∂t
T + T ∗ B ∗ ∇Eε + T ∗ ∇B ∗ Eε

= ∇ ∂

∂t
T + T ∗ p3(∇B) + εT ∗ p2k−1(∇2k−3B).

Then, starting from equation (5.5) and working by induction, again in
normal coordinates, we get

∂

∂t
∇sB = 2εk(−1)k∇s+2

(k − 2)–times
︷ ︸︸ ︷
∆M ◦ ∆M ◦ . . . ◦ ∆M H + ∇s+2H

+ εp2k+s−1(∇2k+s−3B) + ps+3(∇s+1B)

+ εp2k+s−1
j (∇2k+s−3B)

∂ϕ

∂xj
+ ps+3

j (∇s+2B)
∂ϕ

∂xj
.

We notice that every monomial of the terms p2k+s−1(∇2k+s−3B) and
ps+3(∇s+1B) contains at least two factors, since for both the difference
between the rescaling order and the highest possible order of differenti-
ation of B is two.

Hence,

∂

∂t
|∇sB|2 = 4εk(−1)k∇s+2

i1...islw

(k − 2)–times
︷ ︸︸ ︷
∆M ◦ ∆M ◦ . . . ◦ ∆M H

· ∇s
j1...js

Bpz gi1j1 . . . gisjsglpgwz

+ 2∇s+2
i1...islwH∇s

j1...js
Bpz gi1j1 . . . gisjsglpgwz

+ [εp2k+s−1(∇2k+s−3B) + ps+3(∇s+1B)] ∗ ∇sB

= 4εk(−1)k∇s+2
i1...islw

(k − 2)–times
︷ ︸︸ ︷
∆M ◦ ∆M ◦ . . . ◦ ∆M H

· ∇s
j1...js

Bpz gi1j1 . . . gisjsglpgwz

+ 2∇s+2
i1...islwH∇s

j1...js
Bpz gi1j1 . . . gisjsglpgwz

+ εq2k+2s(∇2k+s−3B) + q2s+4(∇s+1B)

and every monomial of the terms q2k+2s(∇2k+s−3B) and q2s+4(∇s+1B)
contains at least three factors, by the previous remark.
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Thus, we have that the time derivative of the quantity
∫
M |∇sB|2 dµ

is given by

4εk(−1)k

∫

M
∇s+2

i1...islw

(k − 2)–times
︷ ︸︸ ︷
∆M ◦ ∆M ◦ . . . ◦ ∆M H

· ∇s
j1...js

Bpz gi1j1 . . . gisjsglpgwz dµ

+ 2

∫

M
∇s+2

i1...islwH∇s
j1...js

Bpz gi1j1 . . . gisjsglpgwz dµ

+ ε

∫

M
q2k+2s(∇2k+s−3B) dµ +

∫

M
q2s+4(∇s+1B) dµ,

where we used that
∂

∂t
dµ = 〈H, Eε〉 dµ;

hence its contribution can be absorbed in the last two terms (notice that,
in doing this, the condition of at least three factors in the monomials of
q2k+2s(∇2k+s−3B) and q2s+4(∇s+1B) is preserved).

To conclude, we need the following formula, which is obtained by
direct computation:

(5.6) ∇iBjl = ∇jBil + (B ∗ B)z
∂ϕ

∂xz
.

Indeed, the 3–tensor ∇iBjl taking values in R
n+m is not symmetric (see

also Remark 5.1).
Reasoning then as in [26, Lemmas 7.2, 7.3, Prop. 7.4] (integrating by

parts and interchanging derivatives), with the only care that instead of
applying formula (2.4) in that paper, we use formula (5.6), we eventually
obtain equation (5.3).

The final polynomials q2k+2s(∇2k+s−3B) and q2s+4(∇s+1B) still have
the three factors property, as every interchange of covariant derivatives
in the previous process always introduces an extra lower order term,
with one more factor of kind ∇lB (since the formula of interchange of
covariant derivatives involves the Riemann tensor, that we express in
terms of B), which is absorbed in q2k+2s(∇2k+s−3B) and q2s+4(∇s+1B).

The same happens when one uses formula (5.6).

Equation (5.4) follows analogously. q.e.d.

6. ε–Independent Estimates

For any integer s > n/2 and ε > 0 we set

(6.1) Qs
ε(t) =

∫

M

(
1 + |∇sB|2 + |B|2s+2

)
dµ, t ∈ [0, +∞).

Letting ε > 0 vary, we want to study the evolution of Qs
ε under the flows

ϕε associated with the functionals Gε
k (we recall that k > [n/2] + 2).
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By Lemma 5.4, we have

∂Qs
ε

∂t
= −2

∫

M
|∇s+1B|2 dµ − 4εk

∫

M
|∇s+k−1B|2 dµ(6.2)

+

∫

M
q2s+4(∇s+1B) dµ + ε

∫

M
q2k+2s(∇2k+s−3B) dµ.

In order to deal with the polynomial terms we state in other words
Proposition 6.5 in [26] (see all Section 6 in the same paper).

Proposition 6.1. Choosing some δ > 0 and setting D = Vol(M) +
‖H‖Ln+δ(µ), there exists a constant C depending only on n, m, l, z, j,
p, q, r, δ and D, such that for every compact, n–dimensional man-

ifold (M, g), isometrically immersed in R
n+m, and covariant tensor

T = Ti1...il, the following inequality holds

(6.3) ‖∇jT‖Lp(µ) ≤ C ‖T‖σ
W z,q(µ)‖T‖1−σ

Lr(µ),

for all z ∈ N, j ∈ {0, . . . , z}, p, q, r ∈ [1, +∞) and σ ∈ [j/z, 1] with the

compatibility condition

1

p
=

j

n
+ σ

(
1

q
− z

n

)
+

1 − σ

r
.

If such a condition gives a negative value for p, the inequality holds

in (6.3) for every p ∈ [1, +∞) on the left hand side.

This clearly implies, looking at the definition of the quantities Qs
ε,

that we can alternatively let the constant C in inequality (6.3) depend

on n, m, s, l, z, j, p, q, r and Q
[n/2]+1
ε .

Working now as in Section 7 of [26], with s > n/2 fixed, we can
interpolate the polynomial terms as follows,

∫

M
q2s+4(∇s+1B) dµ ≤

∫

M
|∇s+1B|2 dµ + C1(Q

[n/2]+1
ε )

∫

M
q2k+2s(∇2k+s−3B) dµ ≤ 3k

∫

M
|∇s+k−1B|2 dµ + C2(Q

[n/2]+1
ε )

where C1(Q
[n/2]+1
ε ) and C2(Q

[n/2]+1
ε ) are some constants depending only

on n, m, k, s and Q
[n/2]+1
ε .

We discuss briefly a key point of such estimates.

By Lemma 5.4, we know that every monomial of q2s+4(∇s+1B) and
q2k+2s(∇2k+s−3B) contains at least three factors for the ∗–product.

Then, if a monomial of q2s+4(∇s+1B) contains a factor ∇s+1B, all
the other factors ∇lB (which are at least two) must have 0 ≤ l < s + 1,
because every other factor contributes with l + 1 ≥ 1 to the total sum
2s + 4, giving the rescaling order. Hence, since ∇s+1B can eventually
occur only one time, we can “eliminate” it by means of Young inequality
and interpolate.
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Regarding the term q2k+2s(∇2k+s−3B), by the same argument, if some
monomial contains at least one factor ∇s+k−1+jB for some integer j ≥
0, then all the other factors ∇lB (which are at least two) must have
0 ≤ l < s + k − j − 1. Then, integrating repeatedly by parts, we can
“move” j derivatives from the factor ∇s+k−1+jB to the other factors,
obtaining a polynomial q2k+2s(∇k+s−1B) whose monomials contain at
most only one factor ∇s+k−1B. At this point, we conclude as for the
other polynomials, using the Young inequality and interpolation.

Hence, for every s > n/2, by (6.2) we have the estimate

∂Qs
ε

∂t
≤ −

∫

M
|∇s+1B|2 dµ − εk

∫

M
|∇s+k−1B|2 dµ + C(Q[n/2]+1

ε ) ,

where C = C1+εC2 and the constants C1, C2 depend on ε only through

Q
[n/2]+1
ε .

Theorem 6.2. For any integer s > n/2 there exists a smooth func-

tion Zs : R → (0, +∞) such that

∂t

∫

M

(
1 + |∇sB|2 + |B|2s+2

)
dµ(6.4)

≤ Zs

(∫

M

(
1 + |∇[n/2]+1B|2 + |B|2[n/2]+4

)
dµ

)

for every ε ∈ (0, 1) and any smooth evolution by the gradient of the

functional Gε
k.

Proof. The functions Zs can be clearly chosen to be smooth, possibly
slightly enlarging the constants in the last inequality above. q.e.d.

As a consequence we get the following proposition.

Proposition 6.3. In the same hypotheses of Theorem 6.2, there ex-

ists a continuous nonincreasing function Θ : (0, +∞) → (0, +∞), in-
dependent of ε ∈ (0, 1), such that for every T ≥ 0 and t ∈ [T, T +

Θ(Q
[n/2]+1
ε (T ))] we have Q

[n/2]+1
ε (t) ≤ 2Q

[n/2]+1
ε (T ).

Proof. The statement follows by a standard ODE’s argument applied
to the differential inequality

∂t

∫

M

(
1 + |∇[n/2]+1B|2 + |B|2[n/2]+4

)
dµ

≤ Z[n/2]+1

(∫

M

(
1 + |∇[n/2]+1B|2+ |B|2[n/2]+4

)
dµ

)

which is the first case of Theorem 6.2. q.e.d.

In other words, this proposition says that (for ε small enough) we

have a uniform control Q
[n/2]+1
ε (t) ≤ C in some time interval [T, T + Θ]

(hence also a control on the constants in Proposition 6.1 and on the right
hand side of inequalities (6.4) for every s > n/2), with C and Θ > 0
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depending (smoothly) only on the value of Q
[n/2]+1
ε at the starting time

T .

7. Convergence to the Mean Curvature Flow

In this section we prove the convergence of solutions ϕε : M ×
[0, +∞) → R

n+m to (1.1) (all starting from a common immersion ϕ0)
to the mean curvature flow ϕ : M × [0, Tsing) → R

n+m before its first
singularity time. Since we are considering ε → 0, we can assume in all
this section that ε ∈ (0, 1).

We need the following result (which can be proved as in the codimen-
sion one case following [26, Proposition 6.3]).

Proposition 7.1. If a compact, n–dimensional manifold (M, g), iso-

metrically immersed in R
n+m, satisfies Vol(M) + ‖H‖Ln+δ(µ) ≤ D for

some δ > 0 then for every covariant tensor S = Si1...il we have

max
M

|S| ≤ C
(
‖∇S‖Lp(µ) + ‖S‖Lp(µ)

)
if p > n,

where the constants depend only on n, m, l, p, δ and D.

Let Qs(t) denote, for each nonnegative time t before the first singu-
larity, the right hand side of equation (6.1) for the mean curvature flow
ϕ at time t.

Lemma 7.2. Let ε belong to some interval (0, ε0) with ε0 < 1.
If the family of immersions ϕε(·, T ) : M → R

n+m are bounded in

the C∞ topology, for any s ∈ N all the quantities |∇sB| are uniformly

bounded by ε–independent constants Cs < +∞ in the time interval

[T, T + θ], where θ = Θ(supε∈(0,ε0) Q
[n/2]+1
ε (T )) > 0 and Θ is the func-

tion in Proposition 6.3.

Proof. By the C∞ boundedness of the family ϕε(·, T ) : M → R
n+m,

all the quantities Q
[n/2]+1
ε (T ) are equibounded, as ε ∈ (0, ε0). Since the

function Θ is continuous and nonincreasing, setting

θ = Θ

(
sup

ε∈(0,ε0)
Q[n/2]+1

ε (T )

)
> 0,

by Proposition 6.3 there exists a constant C > 0 such that Q
[n/2]+1
ε (t) ≤

C for every ε ∈ (0, ε0) and t ∈ [T, T + θ].

Then, again by the boundedness of the family ϕε(·, T ) and Theo-
rem 6.2, in the same time interval [T, T + θ] all the quantities

∫

M

(
1 + |∇sB|2 + |B|2s+2

)
dµ,

for every s > n/2, are bounded by ε–independent constants Cs < +∞.
Moreover, all the constants in the interpolation inequalities of Proposi-
tions 6.1 and 7.1 are also bounded.
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Now, as a first step we see that, by means of Proposition 6.1, we get
the following estimates, for every p ∈ [2, +∞) and s > n/2:

∫

M
|∇sB|p dµ ≤ Cs,p

in the same time interval [T, T +θ]. Here again the constants Cs,p < +∞
are ε–independent.

Then, we conclude the proof by means of Proposition 7.1. q.e.d.

Lemma 7.3. Assume that at time t = T the family of maps ϕε(·, T ) :
M → R

n+m converges as ε → 0 in the C∞ topology to the immersion

ϕT : M → R
n+m. Then the maps ϕε smoothly converge in the time

interval [T, T + Θ(Q[n/2]+1(T ))) to the solution of the mean curvature

flow starting from ϕT (here, Q[n/2]+1(T ) is the quantity relative to the

immersion ϕT ).

Proof. Choosing any ε0 < 1, by the previous lemma, we have uniform
bounds on B and its derivatives in the time interval [T, T + θ] with

θ = Θ(supε∈(0,ε0) Q
[n/2]+1
ε (T )). Then, there exists C > 0 independent

of ε ∈ (0, ε0) such that

∣∣∣∣
∂ϕε(p, t)

∂t

∣∣∣∣ = |Eε(p, t)| < C ∀(p, t) ∈ M × [T, T + θ], ε ∈ (0, ε0).

Now we consider the metric tensors gε
ij(p, t) =

〈
∂ϕε(p,t)

∂xi
, ∂ϕε(p,t)

∂xj

〉
, and

fix a vector V = {vi} ∈ TpM . Then we have

∣∣∣∣
∂

∂t
|V |2gε(p,t)

∣∣∣∣ =
∣∣∂tg

ε
ij(p, t)vivj

∣∣ = 2
∣∣〈Eε, Bij〉vivj

∣∣

≤ 2|Eε| |B|gε(p,t)|V |2gε(p,t) ≤ C|V |2gε(p,t)

where C does not depend on ε ∈ (0, ε0).

Then a simple ODE’s argument shows that the metrics gε
ij are all

equivalent; more precisely, there exists a positive constant C depending
only on ϕT such that

(7.1)
Id

C
≤ gε

ij(p, t) ≤ CId,

as matrices.

Moreover, as functions, all the gε
ii =

∣∣∣∂ϕε

∂xi

∣∣∣
2

are equibounded above

by a common constant.



428 G. BELLETTINI, C. MANTEGAZZA & M. NOVAGA

Hence, by Ascoli–Arzelà’s Theorem, up to a subsequence, the im-
mersions ϕε uniformly converge, as ε → 0, to some Lipschitz map
ϕ̂ : M × [T, T + θ] → R

n+m, which clearly satisfies ϕ̂(p, T ) = ϕT (p)
for every p ∈ M .

Similarly, as the time derivative of the Christoffel symbols is given by

(7.2)
∂

∂t
Γl

ij = ∇Eε ∗ B + Eε ∗ ∇B

(see the beginning of Section 5) and all the metrics are equivalent, it
follows that all the Christoffel symbols are equibounded. This means
that estimating the covariant derivatives is equivalent to estimating
the standard derivatives in coordinates; hence, we immediately have
|∂s∇lB| ≤ Cs,l for every s, l ∈ N.

Since

∂

∂t
gε
ij = 2〈Eε, Bij〉

we get
∣∣∣∣∇

s ∂

∂t
gij

∣∣∣∣ ≤ Cs,

and, by formula (7.2),
∣∣∣∣∇

s ∂

∂t
Γl

ij

∣∣∣∣ ≤ Cs

for every s ∈ N.

Hence, we get
∣∣∣∂s ∂

∂tΓ
l
ij

∣∣∣ ≤ Cs which implies, as the family of maps

ϕε
T is bounded in the C∞–topology, that |∂sΓl

ij | ≤ Cs.

Since we already know that |ϕε| are equibounded, |∂ϕε| ≤ C and
∂2ϕε = Γ∂ϕε +B, by the estimates |∂s∇lB| ≤ Cs,l we can conclude that
the derivatives |∂sϕε| are all bounded by ε–independent constants Cs,
for every s ∈ N.

Finally, the uniform control on the time and mixed derivatives of ϕε

follows using the evolution equation.
Hence, the sub–convergence ϕε → ϕ̂, as ε → 0, is in the C∞ topology

and ϕ̂ is smooth; moreover, the limit metric is positive definite by (7.1).

Passing to the limit in the evolution equation ∂tϕ
ε = Eε, by the

bounds on B and its derivatives, shows that ϕ̂ : M × [T, T + θ] → R
n+m

is the flow by mean curvature of the starting smooth datum ϕT . Since
this flow is unique, the entire sequence of maps ϕε converges to ϕ̂ in the
time interval [T, T + θ].
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Choosing now any δ > 0, we take ε0 > 0 such that

sup
ε∈(0,ε0)

Q[n/2]+1
ε (T ) − Q[n/2]+1(T ) < δ;

this is clearly possible as ϕε(·, T ) converges smoothly to ϕT .

Since the function Θ is nonincreasing (see Lemma 7.2), then we con-
clude that for any δ > 0 the sequence ϕε converges to the mean curvature
flow of ϕT in the time interval [T, T + Θ(Q[n/2]+1(T ) + δ)].

Letting δ go to zero, as the function Θ is continuous, we get the thesis.
q.e.d.

We are now in the position to prove Theorem 1.1.

Proof of Theorem 1.1. Let Tmax be the maximal time such that ϕε con-
verge to the solution of the mean curvature flow equation ϕ in C∞(M ×
[0, Tmax)) starting at time t = 0 from the common immersion ϕ0. Ob-
serve that Tmax is positive by Lemma 7.3. We want to show that Tmax

coincides with the first singularity time Tsing for ϕ.
Assume by contradiction that Tmax < Tsing. Then ϕ(·, t) → ϕ(·, Tmax)

in C∞(M) as t → Tmax. As the function Θ is continuous, there exists

lim
t→Tmax

Θ(Q[n/2]+1(t)) = Θ(Q[n/2]+1(Tmax)) = τ > 0.

Choosing now a time T ∈ [Tmax−τ/4, Tmax) such that Θ(Q[n/2]+1(T )) >
τ/2, and applying Lemma 7.3, we see that ϕε(·, t) converges to the mean
curvature flow also for t in the interval [T, T + τ/2]. As T + τ/2 ≥
Tmax − τ/4 + τ/2 > Tmax, we have a contradiction. q.e.d.
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